Qual é o neurotransmissor responsável pela contração muscular esquelética?

Origem: Wikipédia, a enciclopédia livre.

Uma junção neuromuscular (ou junção mioneural) é a junção entre a parte terminal de um axónio motor com uma placa motora (ou sinapse neuromuscular), que é a região da membrana plasmática de uma fibra muscular (o sarcolema) onde se dá o encontro entre o nervo e o músculo permitindo desencadear a contração muscular.

Na junção neuromuscular o neurotransmissor utilizado é a acetilcolina. A fibra nervosa ramifica-se no final, para formar a placa terminal. que se invagina para dentro da fibra muscular, mas repousa inteiramente na parte externa da membrana.

Músculos requerem inervação para funcionarem - até mesmo para apenas manter o tônus muscular, evitando a atrofia. A transmissão sináptica na junção neuromuscular se inicia quando um potencial de ação atinge o terminal pré-sináptico de um neurônio motor, que ativa canais de cálcio dependente de voltagem, permitindo a entrada de íons de cálcio no interior do neurônio. Íons de cálcio ligam-se à proteínas sensitivas (sinaptotagminas) em vesículas sinápticas, armando vesículas de fusão na membrana celular e subsequente liberação de neurotransmissores do neurônio motor na fenda sináptica. Em vertebrados, o neurônio motor libera acetilcolina (ACh), uma pequena molécula que se difunde através da fenda sináptica e se liga a receptores nicotínicos de acetilcolina (nAChRs) na membrana plasmática da fibra muscular, conhecida como sarcolema. Os nAChRs são receptores ionotrópicos, o que significa que atuam como canais iônicos ativados por ligantes (ligand-gated ion channels, em inglês). A ligação de ACh ao receptor pode despolarizar a fibra muscular, causando uma cascata de eventos que eventualmente resulta em contração muscular.

A placa motora é o local em que um estímulo elétrico tem de ser transformado em movimento, através de alguns mediadores químicos, o principal dos quais a acetilcolina, permitem essa transformação.

As sinapses, incluindo as placas motoras e o sistema nervoso autônomo são colinérgicos, isto é, liberam acetilcolina.

Mecanismo de ação[editar | editar código-fonte]

A junção neuromuscular é onde o neurônio ativa a contração de um músculo. Quando um potencial de ação chega ao terminal pré-sináptico de um neurônio, canais de cálcio dependentes de voltagem abrem e íons Ca2+ fluem do fluído intersticial ao citosol do neurônio pré-sináptico. Esse influxo de Ca2+ causa as vesículas cheias de neurotransmissores a se ligar à membrana celular do neurônio com o auxílio das proteínas SNARE. Essa fusão resulta no esvaziamento das vesículas que contém acetilcolina na fenda sináptica, por exocitose. A acetilcolina se difunde na fenda e se liga aos receptores nicotínicos de acetilcolina na placa motora.

Ver também[editar | editar código-fonte]

  • Bloqueador neuromuscular
  • Neurônio motor
  • Miastenia gravis

Ouça este artigo:

A acetilcolina (ACh) é um neurotransmissor do sistema colinérgico amplamente distribuído no sistema nervoso autônomo, bem como em certas regiões cerebrais.

Este neurotransmissor é liberado por:

  • Todas as fibras pré-granglionares no sistema nervoso autônomo e aquelas da medula da adrenal;
  • Fibras pós-ganglionares parassimpáticas que se dirigem para o órgão efetor;
  • Algumas fibras simpáticas de vasos em músculos esqueléticos.

O efeito vasodilatador da acetilcolina em vasos sanguíneos isolados necessita de um endotélio intacto. Antigamente, acreditava-se que a ativação dos receptores muscarínicos resultava na liberação de uma substância vasodilatadora, denominada fator relaxante de endotélio (FRED). Por outro lado, era conhecido que vasodilatadores (que sintetizam óxido nítrico – NO), como o nitroprussiato de sódio e a nitroglicerina, não exigem a presença de células endoteliais intactas para levar ao relaxamento. Estes e outros experimentos indicavam grande similaridade entre o FRED e o NO e atualmente são considerados uma mesma substância.

Desde que foi descoberto, o NO tem sido relacionado a funções como a citotoxicidade do macrófago, relaxamento intestinal não-adrenérgico não-colinérgico, neurotoxicidade e plasticidade no hipocampo e cerebelo. Além disso, o NO libera pelo endotélio medeia a vasodilatação causada por uma série de autacóides (hormônios locais), através da ativação da guanililciclase, que eleva as concentrações do GMPc (guanosina monofosfato cíclico).

Biossíntese da Acetilcolina

A biossíntese desse neurotransmissor por parte dos neurônios colinérgicos se dá pela acetilação da colina, catalisada pela enzima colina-acetiltransferase (CAT), com acetil coenzima A (acetil-CoA) funcionando como doador de grupos acetil.

A colina é ativamente transportada para o axoplasma do neurônio a partir de sítios extraneuronais por um processo de captação de colina de alta e baixa afinidade. O sistema de alta afinidade pode sofrer inibição pelo hemicolínio.

Após a síntese, a acetilcolina é transportada para as vesículas de armazenamento. Cada vesícula pode conter de 1.000 a mais de 50.000 moléculas de acetilcolina, além de ATP e uma proteína específica denominada vesiculina, Quando o turnover de acetilcolina é alto, o transporte de colina para as terminações nervosas pode se transformar na etapa que limita a velocidade da reação.

Liberação de Acetilcolina

Acredita-se que a ACh seja liberada nas placas motoras terminais das junções neuromusculares, em quantidades constantes, ou vesículas. Quando o potencial de ação alcança a terminação nervosa motora, há liberação sincrônica de 100 ou mais vesículas de ACh.

A despolarização de uma terminação nervosa possibilita o influxo de cálcio através de canais voltagem-sensíveis. Este influxo de cálcio facilita a fusão da membrana vesicular com a membrana plasmática da terminação nervosa, resultando na extrusão do conteúdo das vesículas.

Interrupção das Ações da Acetilcolina

A acetilcolina é rapidamente hidrolisada pela enzima acetilcolinesterase (AChE). Esta última, também conhecida como colinesterase específica ou verdadeira, é encontrada em neurônios colinérgicos, nas adjacências das sinapses colinérgicas e em outros tecidos. É altamente concentrada na junção neuromuscular. A hidrólise da acetilcolina ocorre também ao redor das terminações nervosas.

O sítio ativo de AChE consiste em um sítio aniônico, que interage com um grupo nitrogênio quaternário da molécula de AChE, e um sítio esterásico, que interage com o grupo éster da ACh e o hidrolisa.

A butirilcolinesterase, também conhecida como pseudocolinesterase ou esterase sérica, está presente em diversos tipos de células gliais. É especialmente encontrada no plasma sanguíneo e no fígado.

Embora ambos os tipos de enzima sejam capazes de hidrolisar a acetilcolina, eles podem ser diferenciados por suas taxas de hidrólise da pseudocolinesterase.

Nas placas terminais motoras da musculatura esquelética, a maior parte das AChE encontra-se na superfície e nas invaginações da membrana pós-juncional.

A ação da AChE é imediata, sendo que aproximadamente 90% da ACh liberada podem ser hidrolisadas antes de chegar na membrana pós-sináptica. Os produtos de degradação são ácido acético e colina. O primeiro é rapidamente recaptado para as diferentes vias bioquímicas no interior do citoplasma, enquanto que a segunda é ativamente transportada de volta para a terminação nervosa, local onde será novamente reutilizada na síntese de ACh.

Efeitos

No sistema cardiovascular, a ACh é responsável por:

  • Vasodilatação;
  • Redução da freqüência cardíaca;
  • Diminuição da força de contração cardíaca;
  • Queda da condução nervosa no nodo sinoatrial e nodo atrioventricular.

Na mente, a ACh desempenha um importante papel nas funções cognitivas, como, por exemplo, a aprendizagem.

Os receptores neuronais de ACh encontram-se espalhados no sistema nervoso central e sistema nervoso periférico, onde atuam como receptores inotrópicos (que de acordo com a tradução da terminologia inglesa significa canais iônicos de abertura ligante-dependente), uma das duas grandes classes de receptores transmembrana.

Os receptores de ACh são divididos em duas classes:

  • Receptores nicotínicos: são canais iônicos controlados por ligantes pelo mecanismo de portões e sua ativação leva a um rápido aumento na permeabilidade celular ao Na+ e K+, despolarização e excitação (abertura rápida do canal iônico). Os receptores nicotínicos são proteínas pentaméricas compostas por, no mínimo, duas subunidades distintas (α e β). Nos humanos, oito variantes de subunidade α foram observadas e três subunidades β. Cada subunidade contém múltiplos domínios transmembrana e as subunidades individuais circundam um canal interno. Estes receptores são encontrados na periferia e na junção neuromuscular e na sinapse ganglionar, e também no cérebro, local onde a ACh é um neurotransmissor.
  • Receptores muscarínicos: estes são metabotrópicos e encontram-se associados a uma proteína G. Cinco subtipos de receptores muscarínicos foram detectados por clonagem molecular. Todavia, os receptores definidos farmacologicamente através da ação de antagonistas são três apenas (M1, M2 e M3). Os receptores M1 são encontrados nos gânglios autônomos, em neurônios do sistema nervoso central e nas células parietais gástricas e aparentemente medeiam os efeitos excitatórios da ACh. Esta excitação é gerada por redução na condutância ao K+ e pela inibição dos canais de cálcio. Os receptores M2 e M3 localizam-se nas glândulas secretoras, músculo liso e no sistema nervoso central. Relacionam-se com os efeitos excitatórios da ACh.

No aparelho respiratório, a ACh é responsável por provocar fechamento do esfíncter pós-capilar, resultando no enchimento dos sinusóides venosos e extravasamento de líquidos, aumentando o volume da submucosa e vasodilatação. Também é responsável por ativar as glândulas serosas, levando a exacerbação das secreções e conseqüente rinorréia.

Os inibidores dos receptores de ACh, como, por exemplo, a atropina, causam relaxamento na musculatura e outros efeitos, devendo ser utilizado com cautela.

A ACh também é responsável por causar os seguintes efeitos no organismo: broncoconstrição, dilatação de esfíncteres no trato gastrointestinal, sudorese, aumento da salivação e miose.

Fontes:
//pt.wikipedia.org/wiki/Acetilcolina
//web.archive.org/web/20210617182231///psiquiatriageral.com.br/cerebro/neurotransmissores.htm

Farmacologia Aplicada à Medicina Veterinária – Helenice de Souza Spinosa, Silvana Lima Górniak e Maria Martha Bernardi; 4° edição. Editora Guanabara Koogan, 2006.

AVISO LEGAL: As informações disponibilizadas nesta página devem apenas ser utilizadas para fins informacionais, não podendo, jamais, serem utilizadas em substituição a um diagnóstico médico por um profissional habilitado. Os autores deste site se eximem de qualquer responsabilidade legal advinda da má utilização das informações aqui publicadas.

Texto originalmente publicado em //www.infoescola.com/neurologia/acetilcolina/

Qual o neurotransmissor que causa a contração do músculo esquelético?

A acetilcolina consiste numa substância química que atua como neurotransmissor, transmitindo os impulsos nervosos entre as células do sistema nervoso. Também se encontra associada à transmissão de impulsos entre as junções das células nervosas e musculares, que provocam a contração muscular.

Qual é o neurotransmissor liberado pelos neurônios motores do músculo esquelético?

Acetilcolina: A função desse neurotransmissor é estimular a propagação dos impulsos nervosos das células nervosas para células motoras e músculos esqueléticos.

O que promove a contração muscular?

A contração muscular depende da disponibilidade de íons cálcio e o relaxamento muscular está na dependência da ausência destes íons. O fluxo de íons cálcio é regulado pelo retículo sarcoplasmático (RS), para a realização rápida dos ciclos de contração muscular.

Como ocorre o processo de contração muscular no músculo esquelético?

A contração do músculo esquelético ocorre com a ação de impulsos nervosos, liberando íons cálcio que atuarão com moléculas de ATP no movimento dos filamentos das miofibrilas. O músculo esquelético é o responsável pelos movimentos do corpo dos vertebrados.

Toplist

Última postagem

Tag