Livro motores de combustão interna Pdf

You're Reading a Free Preview
Pages 10 to 20 are not shown in this preview.

You're Reading a Free Preview
Pages 25 to 28 are not shown in this preview.

You're Reading a Free Preview
Pages 37 to 56 are not shown in this preview.

You're Reading a Free Preview
Pages 61 to 72 are not shown in this preview.

You're Reading a Free Preview
Pages 83 to 117 are not shown in this preview.

You're Reading a Free Preview
Pages 123 to 126 are not shown in this preview.

You're Reading a Free Preview
Pages 133 to 146 are not shown in this preview.

You're Reading a Free Preview
Pages 152 to 155 are not shown in this preview.

You're Reading a Free Preview
Pages 165 to 190 are not shown in this preview.

You're Reading a Free Preview
Pages 198 to 200 are not shown in this preview.

You're Reading a Free Preview
Pages 205 to 210 are not shown in this preview.

You're Reading a Free Preview
Pages 215 to 228 are not shown in this preview.

You're Reading a Free Preview
Pages 238 to 241 are not shown in this preview.

You're Reading a Free Preview
Pages 246 to 254 are not shown in this preview.

You're Reading a Free Preview
Pages 265 to 275 are not shown in this preview.

1 MOTORES DE COMBUSTÃO INTERNA PROF. ENGº. DURVAL PIZA DE OLIVEIRA JUNIOR

2 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 2 Prefácio da 1ª edição O objetivo deste trabalho é fornecer aos alunos os conceitos básicos dos motores de combustão interna. Ele deve ser um auxiliar no acompanhamento das aulas de Sistemas Mecânicos II, na FATEC-SP Agradeço aos meus mestres pelos conhecimentos transmitidos e em especial a minha esposa Rose e a meus filhos, Ricardo, Denis e Amanda, pela paciência nos finais de semana em que não houve passeios para que Eu pudesse executar este trabalho. Piracicaba, fevereiro de 1997 Prof. Eng.º Durval Piza de Oliveira Junior

3 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 3 Conto com a sua colaboração para aprimorar cada vez mais este trabalho Um abraço. Durval 01/2004

4 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 4 ÍNDICE Capítulo 1 Motores de combustão interna Definições básicas... 5 Capítulo 2 Princ ípios de Funcionamento Capítulo 3 Tópicos de Termodinâmica Capítulo 4 Ensaios de motores de combustão interna Capítulo 5 Estudo da Combustão Capítulo 6 Sistemas de Alimentação Capítulo 7 Sistemas de Injeção Eletrônica de Combus ível Capítulo 8 Sistemas de Injeção de Combusível Para Motores Diesel Capítulo 9 Sistemas de Arrefecimento e Lubrificação Anexos Anexo I... 97

5 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 5 1 MOTORES DE COMBUSTÃO INTERNA MOTORES TÉRMICOS São dispositivos que convertem energia térmica em trabalho mecânico, divide-se em dois grupos: Combustão interna - a mistura admitida para dentro do motor é queimada e sua energia térmica é transformada em energia mecânica. Combustão externa - usa-se o combustível para aquecimento de uma caldeira, onde ocorre a vaporização do líquido que será usado para a propulsão do aparelho que transformará a energia térmica em energia mecânica. Ex. Máquina a vapor, turbina a vapor, etc. NOMENCLATURA BÁSICA Um motor de combustão interna, alternativo, se divide em três partes principais:

6 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 6 Componentes do motor: 01 Bloco 09 - Pistão 02 Cabeçote 10 - Biela 03 Carter 11 - Pino do pistão 04 Válvulas 12 - Casquilhos (Bronzinas) 05 - Eixo comando de válvulas 13 - Árvore de manivelas (Virabrequim) 06 - Balancim (eixo de balancins) 14 - Volante do motor 07 Molas 15 - Vareta 08 Anéis 16 - Tucho OHV- over head valves válvulas no cabeçote OHC - over head camshaft - eixo comando de válvulas no cabeçote DOHC - double over head camshaft - dois eixos comando de válvulas no cabeçote OBS. A seguir vamos detalhar alguns componentes do motor: BLOCO Componente que abriga em seu interior o virabrequim, bielas e pistões. Na prática, é a "estrutura de suporte" do motor, na qual ficam os suportes da sede de casquilhos e também os cilindros. É de ferro-gusa fundido ou de liga de alumínio e apresenta uma série de ranhuras de reforço nos pontos mais críticos. Normalmente o bloco de um motor é fechado por cima pelo cabeçote e por baixo pelo cárter.

7 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 7 CABEÇOTE PISTÃO OBS.: Para controle de dilatação, a cabeça do pistão é cônica e ele é de seção transversal oval.

8 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 8 CLASSIFICAÇÃO DOS MOTORES DE COMBUSTÃO INTERNA Quanto ao tipo de movimento: Alternativos (a pistão) Rotativos (Turbinas a gás - Wankel) Quanto à forma de iniciar a combustão: Ignição por faísca (motores a gasolina e álcool) Ignição espontânea (motores diesel) Quanto à disposição dos órgãos internos: Em linha Em V Opostos

9 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 9 Quanto ao número de cursos do pistão por ciclo motor: Dois tempos (dois cursos do pistão por ciclo) Quatro tempos (quatro cursos por ciclo) * (Um ciclo motor é composto de quatro fases: admissão, compressão, expansão e escapamento.) Motor de ignição por faísca: Motor de ignição espontânea:

10 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 10 Definições: PMS - PMI - Ponto morto superior É o ponto de máximo afastamento da cabeça do pistão em relação à árvore de manivelas Ponto morto inferior É o ponto de mínimo afastamento da cabeça do pistão em relação à árvore de manivelas CURSO (s) - É à distância entre o PMI e o PMS. É o dobro do raio da manivela ( s = 2r ) Cilindrada unitária (Vu) - É o volume deslocado pelo pistão entre o PMI e o PMS. onde D é o diâmetro do pistão Cilindrada total (V) - É a cilindrada unitária multiplicada pelo número de cilindros do motor. onde z é o número de cilindros do motor Volume morto (V 2 ) - É o volume onde será comprimida a mistura ar/combustível; É o volume da câmara de combustão. Volume total do cilindro (V 1 ) V 1 = V u + V 2

11 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 11 Taxa de compressão ( r v ) - É a relação entre o volume total do cilindro e o volume morto. Velocidade média do pistão (v p ) - v p = 2 s n onde n é a rotação do motor Velocidade angular da árvore de manivelas (ω) - w = 2 p n Velocidade angular do comando de válvulas (ω v ) motor 4 tempos - w v = w / 2 motor 2 tempos - w v = w Ângulo α - É o ângulo descrito pela manivela em relação ao eixo do cilindro. Raio da manivela (r) - r = s / 2 Comentário: Outra forma de classificar os motores de combustão interna é através da relação diâmetro x curso do pistão. Motor quadrado: Quando o diâmetro é igual ao curso; Ex. Motor GM ,0 mm x 86,0 mm (Melhor desempenho esportivo) Motor subquadrado: Quando o diâmetro é menor que o curso; Ex. Motor VW AP ,5 mm x 92.8 mm (Desempenho em baixas rotações) Motor superquadrado: Quando o diâmetro é maior que o curso; Ex. Motor FIAT ,0 mm x 54,8 mm (Melhor desempenho esportivo)

12 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 12 MOTORES QUADRADOS, SUBQUADRADOS E SUPERQUADRADOS. O expediente de usar o mesmo bloco em motores de diversas cilindradas é bastante comum. Como exemplo, a GM trabalhava com a Família 1 (Corsa, de 1,0, 1,4 e 1,6 litro, sendo o 1,4 destinado apenas à exportação) e a Família 2 (que começou com o Monza 1,6 e hoje inclui versões 1,8, 2,0, 2,2 e 2,4, este no S10 e Blazer). À distância entre os centros dos cilindros é a mesma dentro de cada família, ainda que o diâmetro dos cilindros e o curso dos pistões sejam modificados. No caso da Fiat o aproveitamento é ainda maior: do 1,0 ao 1,5 litro, passando pelas extintas versões de 1,05 e 1,3 litro, a linha Fiasa (motor nacional que equipou as linhas 147 e Uno, permanecendo no Mille, Palio Young e Fiorino), o diâmetro dos cilindros é o mesmo para todos, 76 mm. Fica fácil perceber que, para ganhar cerca de 50% em cilindrada, do menor ao maior, o curso dos pistões precisa crescer bastante: vai de 54,8 mm (no 1,0) a 82,5 mm (no 1,5, que não deve ser confundido com o motor Sevel argentino de mesma cilindrada). Em conseqüência, o Fiasa 1,0 é um motor superquadrado, ou de curso curto, e o 1,5 um subquadrado ou de curso longo. O que isso implica? Motores de curso longo tendem a obter funcionamento suave, bom torque em baixas rotações e combustão mais completa, pois o percurso da frente de chama no momento da queima é menor e as perdas de calor diminuem -- com benefícios ao consumo e emissões de poluentes. No entanto, se o comprimento das bielas não for adequado ao longo curso, o motor pode conseguir relação r/l desfavorável, o que resulta em vibrações e aspereza. Esse inconveniente era claro nos primeiros Fiasas 1,5, mas foi bastante reduzido quando de sua adoção no Palio. O caso oposto, motor de curso curto ou superquadrado, é a solução preferida em propulsores esportivos. Permite um motor mais baixo, virabrequim mais leve e compacto, bielas mais curtas e leves e mais espaço para as válvulas na câmara de combustão (pois os cilindros devem ter maior diâmetro para chegar à mesma cilindrada), além de menor velocidade média dos pistões. Disso resultam maior potência em altos regimes, facilidade para subir de giros, suavidade de funcionamento em altas rotações e tendência a maior durabilidade nessas condições de uso. Compromisso intermediário pode ser obtido com diâmetro e curso iguais ou equivalentes, no chamado motor quadrado: é o caso dos 2,0-litros a gasolina da GM, da Peugeot/Citroën e também do motor diesel Mazda que equipa Tracker e Grand Vitara: todos possuem exatos 86 mm em ambas as medidas. O aumento de cilindrada a partir do mesmo bloco pode ser efetuado, mas muitos componentes terão de ser substituídos ou modificados, como virabrequim, bielas e -- em alguns casos -- pistões e válvulas. O fabricante pode

13 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 13 também ter efetuado alterações no comando de válvulas, carter e outros elementos, sem falar nos sistemas de injeção e ignição. Mudando-se a cilindrada, o veículo deve receber nova documentação e, se deixou de ser 1,0, será preciso pagar a diferença de impostos que incidiu no momento da compra. Por tudo isso, parece ser bem mais interessante economicamente trocar o motor completo ou mesmo o carro por um de maior cilindrada "de fábrica. Motor Cilindrada Diâmetro Curso Potência RPM Torque RPM Classificação (cm³) (cm) (cm) (cv) (mkgf) VW ,0 77, , Superquadrado VW ,5 92, , Subquadrado Fiat ,4 67, , Superquadrado GM ,6 76, , Superquadrado Ford ,0 86, , Subquadrado GM , , Quadrado VW ,0 86, , Subquadrado Fiat ,4 63, , Superquadrado Ford ,0 83,5 73, , Subquadrado GM ,8 79, , Superquadrado Exercício: Para o motor monocilíndrico, 4 tempos, da figura, são dados: D = 10 cm; r = 4,5 cm; V 2 = 78,5 cm 3 ; n = 4500 rpm. Pede-se: a) a cilindrada (cm 3 ); b) a taxa de compressão; c) a velocidade média do pistão (m/s); d) a velocidade angular do comando de válvulas (rad/s); e) se na rotação dada, a combustão se realiza para um α=25º, qual o tempo de duração da combustão em milisegundos.

14 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 14 2 PRINCÍPIOS DE FUNCIONAMENTO PRINCÍPIOS DE FUNCIONAMENTO Motores quatro tempos: Motores de ignição por faísca (MIF) Em 1862 Beau de Rochas propôs uma seqüência de operação em 4 tempos, que é, até hoje, típica dos motores de ignição por faísca. Em 1876 Nikolaus August Otto, construiu um motor utilizando as idéias de Beau de Rochas, funcionou perfeitamente. Desde então essa seqüência passou a ser conhecida como ciclo de Otto ou ciclo Otto e é mostrada a seguir. 1- Admissão: Válvula de admissão aberta. Válvula de escape fechada. O pistão se desloca do PMS ao PMI admitindo para dentro do cilindro a mistura combustível/ar.

15 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR Compressão: Válvula de admissão fechada. Válvula de escape fechada. O pistão se desloca do PMI ao PMS, comprimindo a mistura. Antes do pistão atingir o PMS, ocorre a faísca, dando origem à combustão. 3 - Expansão: Válvula de admissão fechada. Válvula de escape fechada. A combustão provoca a expansão dos gases que empurram o pistão, fazendoo se deslocar do PMS ao PMI. 4 - Escapamento: Válvula de admissão fechada. Válvula de escape aberta. O pistão se desloca do PMI ao PMS, empurrando para fora os gases queimados. manivelas. OBS. Para se completar um ciclo motor de 4 tempos são necessárias duas voltas completas da árvore de

16 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 16 Aplicações: Veículos de passeio, pequenos veículos de carga, pequenos aviões e pequenas embarcações. Motores de ignição espontânea (MIE) Em 1892 Rudolph Diesel idealizou um novo motor com ignição espontânea, chamado até hoje de motor Diesel, cuja seqüência de operação é mostrada a seguir. 1- Admissão: Válvula de admissão aberta. Válvula de escape fechada. O pistão se desloca do PMS ao PMI admitindo para dentro do cilindro apenas ar 2 - Compressão: Válvula de admissão fechada. Válvula de escape fechada. O pistão se desloca do PMI ao PMS, comprimindo o ar. Antes do pistão, atingir o PMS, ocorre a injeção do combustível, que se mistura com o ar, que está aquecido devido à compressão, dando origem à combustão

17 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR Expansão: Válvula de admissão fechada. Válvula de escape fechada. A combustão provoca a expansão dos gases que empurram o pistão, fazendoo se deslocar do PMS ao PMI. 4 - Escapamento: Válvula de admissão fechada. Válvula de escape aberta. O pistão se desloca do PMI ao PMS, empurrando para fora os gases queimados. Aplicações: Veículos para transporte terrestre, embarcações de médio e pequeno porte e instalações industriais.

18 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 18 Motores de 2 tempos: Em 1878 Dugald Clerk idealizou o ciclo motor em dois tempos, sendo utilizado tanto para motores de ignição por faísca quanto para motores de ignição espontânea. Motores de ignição por faísca (MIF) Quando o pistão se desloca do PMI ao PMS, simultaneamente, ele comprime a mistura (combustível + ar + óleo lubrificante) que está no cilindro, e admite nova quantidade de mistura no carter. Antes do pistão, atingir o PMS ocorre à faísca que da origem à combustão e conseqüentemente a expansão. Com a expansão, o pistão se desloca do PMS para o PMI, liberando as janelas de escape. Ao mesmo tempo ele comprime a mistura que está no carter, fazendo com que a mesma, passe para o cilindro através da janela de transferência. Esta nova mistura ao entrar no cilindro auxilia na expulsão dos gases queimados.

19 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 19 OBS. Para se completar um ciclo motor de 2 tempos é necessária apenas uma volta completa da árvore de manivelas. Aplicações: Motocicletas, cortadores de grama, pequenas bombas, pequenos motores de popa, etc. Motores de ignição espontânea (MIE) Quando o pistão se encontra no PMI, estão abertas as janelas de admissão e a válvula de escape. Ar é empurrado para dentro do cilindro por uma bomba, chamada de bomba de lavagem, auxiliando no escapamento dos gases queimados. Fecha-se a válvula de escape e o ar fica retido no cilindro. O pistão se desloca do PMI ao PMS comprimindo o ar e antes dele atingir o PMS ocorre à injeção do combustível, que da origem à combustão e conseqüentemente a expansão, deslocando o pistão do PMS para o PMI, quando será feita uma nova lavagem do cilindro. Aplicações: Navios de grande porte e instalações estacionárias de grande porte.

20 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 20 Motores rotativos No grupo dos motores rotativos estão incluídos, as turbinas a gás e os motores Wankel. Turbina a gás - O seu princípio de funcionamento está baseado no ciclo termodinâmico criado em 1873 por Brayton. Seus componentes básicos estão indicados na figura. O ar é aspirado pelo compressor que o comprime no interior da câmara de combustão, onde o combustível é injetado e queimado. Devido ao aumento da temperatura causado pela combustão, os gases expandem através da turbina, provocando rotação da mesma e produzindo trabalho útil. Motor Wankel - Idealizado por Felix Wankel, em 1957, aperfeiçoado com a ajuda do físico Dr. Froede foi mostrado em Em 1963 a N.S.U. apresentou um veículo equipado com esse motor e a partir de 1964 foi iniciada a venda desses veículos. O motor Wankel tem seu princípio de funcionamento descrito abaixo. Como é mostrado na figura abaixo, o motor Wankel possui uma carcaça fixa (estator) e um rotor girando em seu interior (movimento epitrocoide), que além do movimento de rotação sofre também um movimento de translação, mantendo os seus três vértices em permanente contato com o estator, mas permitindo que as faces do rotor se afastem e se aproximem do estator. A cada volta, cada face do rotor, realiza um ciclo motor. A - Início da admissão; B - Admissão; C - Início da compressão; D - Máxima compressão e combustão; E Início da expansão; F - Expansão; G Início do escapamento; H - Fim de escapamento.

21 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 21 3 TÓPICOS DE TERMODINÂMICA TÓPICOS DE TERMODINÂMICA Definições importantes Sistema: Quantidade de matéria ou região do espaço fixa ou móvel, sobre a qual vamos fixar a nossa atenção para estudo. Meio: É o que resta do universo excluindo-se o sistema. Fronteira: Superfície real ou imaginária, fixa ou móvel, que separa o sistema do meio. Estado: É a condição em que se encontra o sistema, definido pelas suas propriedades. Propriedades: São grandezas direta ou indiretamente mensuráveis que definem a condição em que se encontra o sistema. Podem ser de dois tipos: Propriedades extensivas: São aquelas que dependem da massa do sistema. Ex. massa, volume, energia cinética, etc. Propriedades intensivas: (específicas) São aquelas que não dependem da massa do sistema. Ex. temperatura, pressão, todas as propriedades extensivas por unidade de massa.

22 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 22 Processo: É a maneira pela qual o sistema muda de estado. Processos típicos: isotérmico (temperatura constante) isocórico (volume constante) isobárico (pressão constante) adiabático (sem trocas de calor) isoentrópico (entropia constante) reversível (pode ser invertido perfeitamente sem deixar vestígios no meio) Equação de estado (gás perfeito): como o próprio nome diz, é uma equação que representa um estado do sistema, sendo uma relação entre as propriedades de estado, a saber, pressão, volume e temperatura (p, V e T). Ex. Equação de Clapeyron p V = m R T onde: p - pressão absoluta do gás V - volume de gás m - massa de gás R - constante do gás T - temperatura absoluta do gás Para sistema fechado: p1 V1 p2 V = T 1 T 2 Para processo adiabático: p1 V1 k = p2 V2 k onde: k - constante adiabática ou

23 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 23 Relações importantes: c p R R k R = c p - c v ; k = ; c v = ; c p = c v k - 1 k - 1 onde: c v - calor específico a volume constante c p - calor específico à pressão constante Trabalho: Forma de energia em trânsito, que é o produto da projeção da força sobre o deslocamento, pelo próprio deslocamento. Convenção de sinais - sistema sobre o meio W > 0 meio sobre o sistema W < 0 Calor: Forma de energia em trânsito, que ocorre devido a uma diferença de temperatura. Convenção de sinais - sistema para o meio Q < 0 meio para o sistema Q > 0 Energia total: É uma propriedade atribuída ao sistema, constituída por: Energia cinética Energia interna m v 2 Ec = U - energia térmica Energia potencial Ep = m g z OBS. Para sistema aberto deve-se acrescentar uma parcela que é a energia de fluxo, p V.

24 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 24 PRIMEIRO PRINCÍPIO DA TERMODINÂMICA Para sistema fechado: v 2 2 Q - W = E 2 - E 1 v 1 2 Q - W = m ( g z 2 + u 2 ) - m ( g z 1 + u 1 ) 2 2 * para um sistema fechado, as variações de energia potencial e energia cinética, são desprezíveis, logo: Q - W = U 2 - U 1 TRABALHO NO DIAGRAMA p x V 1W 2 = p dv A área abaixo da curva representa o trabalho trocado com o meio. CALOR NO DIAGRAMA T x S 1Q 2 = T ds A área abaixo da curva representa o calor trocado com o meio.

25 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 25 SEGUNDO PRINCÍPIO DA TERMODINÂMICA Para que um sistema, que realize um ciclo, produza trabalho útil, há necessidade de que o sistema troque calor com duas fontes, sendo uma quente e outra fria. Ciclo: É uma seqüência de processos, onde o estado final coincide com o estado inicial. Rendimento térmico do ciclo (η t ) Wc Q R η t = = Q F Q F CICLOS PARA MOTORES DE COMBUSTÃO INTERNA INDICADORES DE PRESSÃO São dispositivos destinados ao levantamento do diagrama real que representa um ciclo de funcionamento de um motor de combustão interna. Indicador mecânico: Defeitos do indicador mecânico: 1. Altera a rv do motor, prejudicando o seu desempenho; 2. A inércia do sistema mecânico influi no resultado; 3. O sistema é rígido, transmitindo as vibrações para a ponta do riscador. OBS. Este aparelho é aplicado em motores de grande porte e baixas rotações, como por exemplo, motores de navio. Diagrama obtido (MIF - 4 t):

26 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 26 Indicador eletrônico:

27 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 27 Diagrama obtido (MIF - 4 t): CICLOS REAIS Ciclo Otto - motor de ignição por faísca 4 tempos Este ciclo foi idealizado por Beau de Rochas (1862) e posto em prática por Nikolaus August Otto (1876), como já foi visto anteriormente. Em média 5 rv 13

28 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 28 Ciclo Diesel - motor de ignição espontânea 4 tempos Este ciclo foi idealizado e posto em prática por Rudolph Diesel (1892), como já foi visto anteriormente. Em média 14 rv 23 CICLOS IDEAIS - CICLOS PADRÃO- AR Hipóteses simplificadoras: 1. O fluido de ativo é apenas ar; 2. O ar se comporta como um gás perfeito; 3. O sistema será considerado fechado, não havendo admissão nem escapamento; 4. Os processos de compressão e expansão serão considerados isoentrópicos; 5. Em substituição à combustão, teremos fornecimento de calor, feito por uma fonte quente externa, sendo no ciclo otto padrão-ar a volume constante e no ciclo diesel padrão-ar a pressão constante; 6. Em substituição ao escapamento, teremos retirada de calor, feita por uma fonte fria externa, sempre a volume constante.

29 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 29 Ciclo Otto padrão-ar: Wc = 1 W W W W 1 Q ÚTIL = Q F - Q R = Wc Rendimento térmico do ciclo otto padrão-ar (h to ) Aplicando o segundo princípio de Termodinâmica Wc Q R onde: Q R = m c v ( T 4 - T 1 ) η to = = Q F Q F Q F = m c v ( T 3 - T 2 ) m c v ( T 4 - T 1 ) ( T 4 - T 1 ) η to = 1 - [ ] η to = 1 - [ ] colocando T 1 e T 2 em m c v ( T 3 - T 2 ) ( T 3 - T 2 ) evidencia, temos: T 1 (T 4 / T 1-1) η to = [ ] T 2 (T 3 / T 2-1) entre os estados (1) e (2), (3) e (4), temos processo isoentrópico, logo: T 1 V 2 T 4 V 3 V = ( ) k-1 e = ( ) k-1 mas = rv logo, T 2 V 1 T 3 V 4 V 2 T 1 1 T 4 T = ( ) k-1 como V 1 = V 4 e V 2 = V 3 teremos: = T 2 rv T 1 T 2 1 portanto η to = 1 - ( ) k-1 rv

30 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 30 Ciclo Diesel padrão-ar Rendimento térmico do ciclo diesel padrão-ar 1 (T 3 / T 2 ) k - 1 Demonstra-se que: η td = 1 - ( ) k-1 [ ] rv k (T 3 / T 2-1) Ciclo Brayton (Turbina a gás) Rendimento térmico do ciclo 1 η t = 1 - ( ) k-1/ k onde rp é relação de pressões ou taxa de pressões rp

31 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 31 Ciclo misto (Sabathé) - Pretende representar melhor os motores de ignição por faísca e ignição espontânea. CONCEITOS LIGADOS AOS CICLOS Potência do ciclo ( Nc) Wc n n = rotação do motor Nc = onde - x = nº. de rotações/ciclo x 4t x = 2 ; 2t x = 1 Pressão média do ciclo ( p mc ) É uma pressão fictícia, que atuando constantemente na cabeça do pistão, produziria o mesmo trabalho que a pressão variável (real) do ciclo. Wc = p mc (V 1 - V 2 ) V u = (V 1 - V 2 ) Wc p mc = V u

32 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 32 Fração residual de gases (f) É a relação entre a massa de gases queimados que permanece dentro do cilindro após o escape (massa residual) e a massa total da mistura. m r m r f = = m t m a + m c + m r onde: m r = massa residual m t = massa total m a = massa de ar m c = massa de comb. V 2 f = V 4 EXERCÍCIOS PROPOSTOS 1) Com base no ciclo otto padrão-ar, onde são conhecidos: motor 4t, monocilíndrico; Vu = 400 cm 3 ; rv = 9; p 1 = 1,0 kgf/cm 2 (abs); t 1 = 27ºC; p 4 = 4,0 kgf/cm 2 (abs). Pede-se: a) a massa de ar com a qual o ciclo vai operar (g); b) completar a tabela abaixo; c) o calor fornecido (J); d) o calor retirado (J); e) o trabalho do ciclo (J); f) o rendimento térmico do ciclo (%); g) a potência do ciclo 9600 rpm) (kw); h) a pressão média do ciclo (kpa). p (kpa) V (cm 3 ) t (º C)

33 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 33 2) Para o ciclo padrão-ar cujo diagrama p x V está esquematizado abaixo, são dados: motor 4t, Vu = 500 cm 3 ; p 1 = 1,0 kgf/cm 2 (abs); t 1 = 27ºC; Q F = 1,0 kcal. Escalas do gráfico: pressão 10 kgf/cm 2 /cm volume 100 cm 3 /cm Pede-se: a) O trabalho do ciclo (J); b) O rendimento térmico do ciclo (%); c) A taxa de compressão; d) A massa de ar com a qual o ciclo vai operar (g). 3) Para se prever o comportamento de um motor 6 cilindros, 4 tempos, de ignição espontânea, utiliza-se um ciclo padrão-ar. São estimados: p máx = 30 kgf/cm 2 (abs); p 1 = 1 kgf/cm 2 (abs); t 1 = 27º C; t 3 = 2300 K; k ar = 1,4; R ar = 29,3 kgf m / kg K; c p = 0,24 kcal / kg K; V 1 = 1000 cm 3 Pede-se: a) a taxa de compressão; d) o trabalho do ciclo (J); b) a cilindrada do motor (cm 3 ); e) a pressão média do ciclo (kpa). c) o calor fornecido (J);

34 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 34 4 ENSAIOS DE MOTORES DE COMBUSTÃO ENSAIOS DE MOTORES DE COMBUSTÃO INTERNA Os ensaios de motores de combustão interna são feitos com os seguintes objetivos: a) Levantamento das curvas características; b) Verificação do desempenho do conjunto e de componentes específicos; c) Ajustes e regulagens do conjunto e de componentes específicos; d) Desenvolvimento de novos projetos. CURVAS CARACTERÍSTICAS Propriedades As propriedades, conjugado na árvore de manivelas ou torque (T), potência (N) e consumo especifico (Ce), são as que serão utilizadas para o "levantamento" das curvas características de um motor de combustão interna, todas elas obtidas em função da rotação. Curvas características de um motor

35 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 35 TORQUE OU CONJUGADO NA ÁRVORE DE MANIVELAS Como mostra a figura abaixo, o conjunto pistão-biela-manivela, faz aparecer um momento instantâneo (T α ) no eixo do motor, causado pela força tangencial (F tan ). Embora o raio da manivela seja constante, esse momento varia com o ângulo α. Com o funcionamento do motor a uma dada rotação se obtém um momento médio positivo que será popularmente chamado apenas de torque (T). F t = força total Fb = força na biela F tan = força tangencial T α = torque instantâneo POTÊNCIA Para um motor de combustão interna, são definidas quatro potências: Potência Térmica (Q) É o calor fornecido por unidade de tempo pela queima do combustível; onde: pci é o poder calorífico inferior do combustível, ou seja, energia por unidade de massa. m c é a vazão em massa de combustível que o motor consome. Potência indicada (Ni) É a potência desenvolvida na cabeça dos pistões; Potência de atrito (Na) É a potência consumida pelas resistências internas do motor; Potência efetiva (Ne) É a potência medida no eixo do motor. Ne = Ni - Na

36 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 36 Rendimento térmico indicado (h ti ) Conhecido também apenas como rendimento térmico Rendimento mecânico (h m ) Rendimento térmico efetivo (h te ) - Conhecido também como rendimento global do motor Consumo especifico (Ce) onde: - m c é a vazão em massa de combustível que o motor consome. A figura abaixo mostra distribuição das potências e rendimentos pelo motor.

37 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 37 DINAMÔMETRO (freio dinamométrico) Equipamento destinado a determinar o torque e a potência efetiva de um motor de combustão interna. Basicamente se compõe de um rotor e um estator com um elemento de acoplamento entre eles, que pode ser água ou um fluxo elétrico, sendo chamado de dinamômetro hidráulico ou dinamômetro elétrico respectivamente. MEDIDA DO TORQUE E DA POTÊNCIA Freio de Prony - É um elemento didático que utilizado para se compreender o funcionamento dos dinamômetros. Ao acelerarmos o motor, a sua rotação tende a aumentar. Apertando-se na cinta ajustável, freia-se o volante do motor, conseguindo o equilíbrio dinâmico mantendo portanto a rotação constante. Devido à ação motora (momento), aparece no braço uma força que será lida no medidor. Logo, T = F b onde: T = torque do motor F = força lida no medidor b = braço do dinamômetro

38 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 38 Cálculo da potência no eixo do motor (Potência efetiva) Para o cálculo da potência basta lembrar que: Ne = ω T ou Ne = 2 π n T Com unidades coerentes teremos: T n Ne = fator Ne T n fator CV kgf m rpm 716,2 HP kgf m rpm 726,2 kw N m rpm 9549,0 Constante do dinamômetro (K) Sabemos que: Ne = T n / fator e T = F b F b n logo Ne = como o valor de b e do fator são constantes, teremos fator b K = portanto, Ne = F K n fator Dinamômetro hidráulico Um dinamômetro hidráulico de alta potência, para altas e baixas rotações, é composto por uma carcaça e dentro um rotor de com vários alvéolos semielípticos, de frente para igual número de alvéolos semelhantes na face interna da carcaça. A água, admitida para a carcaça, passa através de furos existentes nos alvéolos, atingindo os do rotor. A força centrífuga originada pelo movimento de rotação do rotor imprime movimento à água, forçando-a de volta aos alvéolos da carcaça. Este movimento, altamente turbulento, será mantido enquanto o rotor girar. A potência do motor sob prova é absorvida pelo escoamento contínuo de água através do dinamômetro. A absorção de energia se manifesta pelo aumento de temperatura da água, que deve estar disponível em quantidade suficiente para absorver a potência máxima.

39 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 39 Dinamômetro elétrico Existem dois tipos, o dinamômetro de correntes parasitas e o de corrente contínua. Dinamômetro de correntes parasitas Possui rotor em forma de uma engrenagem feita de material de alta permeabilidade magnética e o mesmo material em dois anéis solidários ao estator, separados do rotor por pequeno espaço livre. No centro do rotor existe uma bobina alimentada por corrente contínua. Quando ligado, a bobina gera um campo magnético que é concentrado nos dentes do rotor, que girando gera correntes parasitas nos anéis, que com isso se aquecem. O calor gerado é absorvido pelo estator e retirado deste por um adequado sistema de resfriamento, a água. Este dinamômetro pode ser regulado pela intensidade da corrente que passa pela bobina. Dinamômetro de corrente contínua Este dinamômetro é dependendo da necessidade, um gerador ou um motor elétrico. A sua carcaça é suspensa em rolamentos coaxiais. O campo magnético deste dinamômetro é de excitação independente, variando a alimentação de campo e rotor, se consegue ampla gama de velocidades e potências absorvidas. A variação da ação do freio é feira por um reostato.

40 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 40 Medida do consumo de combustível Método em massa No prato de uma balança coloca-se um reservatório de combustível, que irá alimentar o motor. Utilizando-se da escala da balança como referência, quando o ponteiro passar por um valor conhecido aciona-se um cronômetro e quando o ponteiro passar por um novo valor conhecido, desliga-se o cronômetro. Teremos então uma massa consumida (m c ) num certo tempo (t), o que é exatamente a vazão em massa de combustível consumido. Método em volume Utiliza-se um rotâmetro (medidor de vazão em volume), na linha de alimentação de combustível para o motor, que irá fornecer direto o volume de combustível consumido por unidade de tempo. A desvantagem deste método é que é necessário se conhecer a massa específica do combustível, para se determinar à vazão em massa.

41 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 41 Na falta do rotâmetro, pode-se utilizar uma bureta graduada e um cronômetro, executando-se um processo semelhante ao do método em massa, só que será medido o volume (Vc) consumido por tempo (t). Medida do consumo de ar ( Flow-box ) A figura mostra um equipamento que utiliza uma placa de orifício (diafragma) para a medida de consumo de ar. Princípio básico de funcionamento : Como se sabe a admissão de ar para o motor é pulsante, não sendo portanto um escoamento em regime permanente, para resolver esse problema a tomada de ar para o motor é feita em um tanque, que devido ao seu tamanho, elimina a pulsação, fazendo que pelo orifício, exista uma vazão constante de ar. A pressão dentro tanque será medida por um micromanômetro diferencial, com escala em mmh 2 O.

42 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 42 Aplicando-se a equação de bernoulli entre as seções (1) e (2) teremos: onde m ar é a vazão em massa de ar realmente admitida pelo motor. p atm OBS. A massa específica do ar é determinada pela expressão: ρ ar = R ar T amb Massa ideal de ar (m ae ) Quando o ar é admitido para o motor, à medida que ele se aproxima do cilindro, sofre aquecimento e portanto a sua massa específica (ρ ar ) diminui. Devido a essa diminuição, a massa de ar realmente admitida pelo motor, é menor do que a que caberia no cilindro, se as condições de entrada, p atm, t amb, fossem mantidas. Cálculo da m ae

43 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 43 Rendimento volumétrico: É a relação entre a massa de ar realmente admitida pelo motor e a massa de ar que poderia ser admitida se as condições de entrada, p atm, t amb, fossem mantidas. MISTURA COMBUSTÍVEL / AR - Relação combustível / ar (F) É a relação entre a massa de combustível e a massa de ar que formam a mistura que será admitida pelo motor. Atualmente se utiliza a relação ar / combustível (λ) - Relação combustível / ar estequiométrica ( Fe) É a relação combustível / ar quimicamente correta, para uma combustão completa. O seu valor servirá como referência. Os valores obtidos são apenas de referência, podendo variar.

44 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 44 - Fração relativa (Fr) É a relação entre uma relação combustível-ar qualquer e a relação estequiométrica de um determinado combustível. Se Fr < 1 teremos mistura pobre. ( λr > 1 ) Se Fr = 1 teremos mistura estequiométrica. ( λr = 1) Se Fr > 1 teremos mistura rica. ( λr < 1) Influência do tipo de mistura no comportamento do motor. - Mistura muito rica (Limite rico) O excesso de combustível dificulta a propagação da chama, provocando uma instabilidade na rotação do motor. Provoca também um resfriamento da câmara de combustão e em conseqüência disso a extinção da chama, impedindo o motor de funcionar. (motor afogado ) - Mistura de máxima potência É uma mistura levemente rica, que na condição de plena carga do motor produz a máxima potência. - Mistura econômica É uma mistura levemente pobre, que devido ao excesso de ar permite a queima completa do combustível. Nesta condição o motor pode produzir o mínimo consumo específico. - Mistura muito pobre (Limite pobre) Devido ao excesso de ar, a chama se torna excessivamente lenta, mantendo a combustão durante grande parte da expansão, provocando o superaquecimento da câmara de combustão. Esta condição pode provocar a fusão da cabeça do pistão.

45 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 45 EXERCICIOS PROPOSTOS 1) 2) Em um M.I.F. 4 tempos, com raio de manivela de 40mm, o ângulo descrito pela manivela durante a combustão é de 30º. Quando ensaiado em um dinamômetro, apresentou uma leitura de força de 11 kgf e um consumo de combustível de 90ml em 40s. Em seguida, o motor foi acionado pelo dinamômetro, sendo obtida uma potência de atrito de 3,8 kw. Tanto quando o motor aciona o dinamômetro, quanto quando é acionado, a velocidade média do pistão é de 10 m/s. Sabe-se que o rendimento mecânico é 80 %, o pci = Kcal/kg e o ρc = 0,75 kg/l. PEDE-SE: a) o tempo de duração da combustão em d) a rotação do motor (rpm); milisegundos; b) o consumo específico (g/kwh); e) Ne (kw); c) o rendimento térmico indicado (%); f) o braço do dinamômetro (m).

46 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 46 5 ESTUDO DA COMBUSTÃO ESTUDO DA COMBUSTÃO COMBUSTÃO NORMAL (Motor de ignição por faísca) Pouco antes do pistão atingir o PMS, no curso de compressão, salta uma faísca entre os eletrodos da vela de ignição, provocando o início da reações de oxidação do combustível, porém não aumentando significativamente a pressão e a temperatura. Forma-se junto aos eletrodos da vela uma esfera, chamada de núcleo de chama. A superfície do núcleo de chama é chamada de frente de chama e se propaga por toda a câmara de combustão tendo a sua frente à mistura não queimada e deixando para trás gases queimados. Se a frente de chama não sofrer perturbação nenhuma, teremos uma combustão normal. Para a formação do núcleo de chama é necessário então um certo tempo, chamado de retardamento químico, que causa a necessidade do avanço da faísca em relação ao PMS, para que a combustão ocorra no ponto de máxima compressão. Fatores que influem na velocidade da frente de chama Turbulências aumentam o contato entre as partículas, acelerando a reação Relação combustível-ar misturas levemente ricas provocam uma maior velocidade de propagação Gases residuais a sua presença desacelera a combustão Anomalias da combustão: Pré-ignição - A combustão se inicia antes da faísca da vela, isto é a combustão começa devido a pontos quentes existentes na câmara de

47 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 47 combustão, fazendo o combustível atingir a temperatura de auto-ignição. A pré-ignição não provoca aumento de pressão e sim aumento de temperatura, causando a fusão da cabeça do pistão sem qualquer ruído. Detonação ( batida de pino ) - À medida que a frente de chama avança, a pressão e a temperatura na câmara vão aumentando, o que pode levar a TAI, temperatura de auto-ignição, provocando a queima espontânea de uma grande parcela da mistura, provocando um aumento brusco na pressão e temperatura, o que causa a formação de ondas de choque, que fazem vibrar as paredes da câmara, provocando um ruído audível chamado de batida de pino. Fatores que influem na detonação: 1- Qualidade do combustível - é definida pelo índice de octanas, que indica o poder antidetonante do combustível, quanto maior mais difícil ocorrer à detonação; 2- Pressão e temperatura de admissão - quanto maiores, maior a probabilidade de ocorrer detonação; 3- Temperatura do fluido de arrefecimento - quanto maior, mais probabilidade de ocorrer detonação; 4- Percurso de chama - quanto maior for o percurso, maior a probabilidade de ocorrer detonação, o que limita o diâmetro dos cilindros a valores baixos, raramente maiores que 10 cm; 5- Mistura combustível-ar - as misturas pobres ou ricas, afastadas da mistura estequiométrica, dificultam a ocorrência de detonação; 6- Taxa de compressão - quanto maior, mais probabilidade de ocorrer detonação; 7- Turbulência - quanto maior, menor a probabilidade de ocorrer detonação, facilita a troca de calor; 8- Avanço da faísca - quanto maior, mais probabilidade de ocorrer detonação; 9- Temperatura do eletrodo da vela - vela quente, mais probabilidade de ocorrer detonação, vela fria, menor probabilidade de ocorrer detonação; 10- Geometria da câmara de combustão - a conformação da câmara tem grande influência na detonação. O que se deseja é que a massa de mistura a ser queimada no fi nal da combustão

48 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 48 seja pequena, que a parte final da câmara tenha boa área de troca de calor, que o percurso da chama seja o menor possível e a turbulência produzida seja adequada. COMBUSTÃO NORMAL (Motor de ignição espontânea - Diesel) Antes do pistão atingir o PMS, no curso de compressão, o injetor começa a introduzir combustível pulverizado, que é misturado com o ar, que está com uma temperatura superior a temperatura de auto-ignição (retardamento físico), absorvendo calor, vaporizando e sofrendo as reações preliminares de oxidação (retardamento químico), provocando o início da combustão. Como se pode notar, no motor de ignição espontânea, existem dois retardamentos, um físico e um químico, constituindo um retardamento total, durante o qual o combustível vai sendo injetado sem um aumento significativo da pressão e da temperatura na câmara. Se o retardamento se prolongar mais do que o normal, acumula combustível na câmara e ao ser queimado, provocará um aumento brusco da pressão, causando a detonação. Nos motores de ignição espontânea a detonação ocorre no início da combustão, enquanto que nos motores de ignição por faísca ocorre no final. TIPOS BÁSICOS DE CÂMARAS DE COMBUSTÃO PARA MOTORES DIESEL 1- Injeção direta ou aberta:

49 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 49 Partida a frio fácil; Maior rendimento térmico; Menor consumo de combustível. 2- Injeção indireta ou dividida: Produzir turbulências para reduzir o retardamento físico; Maior perda de calor, redução do rendimento térmico e aumento do consumo. Funcionamento mais suave do motor; Rotações mais elevadas; Partida a frio difícil. Não produz alta turbulência; Movimento se torna altamente turbulento na cabeça do pistão, onde se completa a combustão; Funcionamento mais suave do motor; Rotações mais elevadas; Partida a frio difícil.

50 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 50 6 SISTEMAS DE ALIMENTAÇÃO SISTEMAS DE ALIMENTAÇÃO COM CARBURADOR COM INJEÇÃO ELETRÔNICA DE COMBUSTÍVEL ( single-point )

51 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 51 CARBURAÇÃO - Carburador Elementar É um elemento mecânico que promove a mistura combustível / ar, dosando a quantidade de combustível para uma certa vazão de ar admitida pelo motor. Curva característica de necessidades do motor ( Motor de ignição por faísca)

52 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 52 Sistemas auxiliares do carburador elementar Para que o carburador elementar atenda as necessidades do motor, ele deverá ser equipado, no mínimo, com os seguintes sistemas auxiliares. - Marcha-lenta e progressão; - Acelerações rápidas; - Faixa econômica; - Partida a frio - Máxima potência; Sistema auxiliar de marcha lenta e progressão Quando a borboleta aceleradora encontra-se praticamente fechada, abaixo dela, existe um vácuo muito grande, que vai aspirar mistura pelo orifício (1). O combustível é dosado pelo gicleur (2) e o ar é dosado pelo gicleur (3), proporcionando uma mistura muito rica. A vazão dessa mistura é dosada pela válvula de agulha (4), que permite a regulagem da emissão de CO pelo escapamento na condição de marcha-lenta. Quando a borboleta aceleradora for aberta, haverá um aumento na vazão de ar pelo sistema principal do carburador, provocando um empobrecimento excessivo. Para evitar que isso aconteça, existem os chamados furos de progressão (5), que permitem entrada de mistura rica junto com o ar, provocando um empobrecimento progressivo na passagem das baixas para as médias cargas.

53 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 53 Sistema auxiliar de faixa econômica Também chamado de sistema de correção em cargas médias. Com o aumento da abertura da borboleta, a tendência é que a mistura fique cada vez mais rica. Este sistema tem como função evitar este enriquecimento. Quando o combustível é aspirado pelo venturi, um tubo misturador (1) com uma série de orifícios permite a entrada de ar, dosado pelo gicleur (2), junto com o combustível, fazendo com que a mistura final fique pobre. Sistema auxiliar de máxima potência (com válvula de máxima) Para que o motor possa atingir máxima potência, a mistura deve ser rica. No sistema da figura com a borboleta aceleradora fechada, a câmara (1) fica sujeita a um elevado vácuo, fazendo com que a válvula de diafragma (2) se feche. Com a borboleta próxima da abertura total o vácuo na câmara diminui, fazendo com que a mola abra a válvula, permitindo que uma quantidade extra de combustível seja enviada para o sistema principal, enriquecendo a mistura.

54 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 54 Sistema auxiliar de máxima potência (suplementar aerodinâmico) No sistema da figura, coma borboleta próximo da abertura total, a sucção causada no tubo (1) faz com que por ele seja arrastada uma quantidade extra de combustível, enriquecendo a mistura. Sistema auxiliar de acelerações rápidas Para evitar que a mistura se empobreça bruscamente com uma abertura muito rápida da borboleta aceleradora, o sistema da figura mostra que ao se mover à borboleta no sentido da abertura, o diafragma (2) é comprimido pelo mecanismo, fazendo com que a pressão na câmara (2) aumente, fechando a válvula (5) e abrindo a válvula (4), permitindo que uma grande quantidade de combustível seja jogada no sistema principal através do injetor (3). Ao se mover à borboleta no sentido do fechamento, a mola nove o diafragma, fazendo com que a pressão na câmara (2) diminua, fechando a válvula (4) e abrindo a válvula (5), permitindo a entrada do combustível na câmara.

55 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 55 Sistema auxiliar de partida a frio (afogador) Através de um mecanismo se fecha a borboleta (1), não permitindo a entrada de ar e ao mesmo tempo abre-se, um pouco, a borboleta aceleradora (2), permitindo que a sucção provocada pelo funcionamento do motor, acionado pelo motor de partida, arraste uma certa quantidade de combustível pelo sistema principal enriquecendo bastante a mistura, fazendo com que o motor entre logo em funcionamento. O esquema abaixo mostra um carburador completo, ou seja, com todos os sistemas auxiliares.

56 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 56 TÓPICOS IMPORTANTES DO PROCONVE (Anexo II) (PROCONVE = Programa de controle de poluição do ar por veículos automotores) Criado em 1988 pelo CONAMA (Conselho Nacional do meio Ambiente), consiste nas seguintes resoluções: * Reduzir os níveis de emissão de poluentes; * Desenvolver tecnologia para equipamentos de ensaios e medição de poluição; * Criar programas de inspeção e manutenção da frota nacional; * Padronizar a avaliação de resultados; * Promover a melhoria do combustível nacional. CALENDÁRIO DO CONTROLE DE EMISSÕES PARA VEÍCULOS LEVES (ciclo otto) Ano CO (g/km) (%) HC (g/km) Nox (g/km) Aldeídos (g/km) ,0 3,0 2,1 2, ,0 2,5 1,2 1,4 0, ,0 0,5 0,3 0,6 0,03 A partir de 01/01/88, os fabricantes devem fornecer ao consumidor, através do manual do proprietário, informações sobre a correta manutenção do veículo para a redução da poluição (esta manutenção deve ser recomendada em adesivos colocados em lugar visível e protegido), as especificações de porcentagem de CO, rotação de marcha-lenta e ponto inicial de ignição. O parafuso da mistura do carburador deve ser lacrado ou possuir limitadores invioláveis para a faixa de regulagem. A emissão de gases do carter deve ser nula em qualquer regime de trabalho. A partir de 01/10/90, a emissão evaporativa terá o limite máximo de 6,0g/ensaio. Para atender aos níveis de emissões a partir de 1997 o CNP deverá retirar totalmente o chumbo tetraetila da mistura álcool/gasolina, mantendo o mínimo de 80 octanas.

57 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 57 7 SISTEMAS DE INJEÇÃO ELETRÔNICA DE COMBUSTÍVEL SISTEMAS DE INJEÇÃO ELETRÔNICA DE COMBUSTÍVEL INTRODUÇÃO: Como já foi visto anteriormente, o PROCONVE estabeleceu metas bem definidas para controle das emissões de poluentes pelos veículos automotores. As montadoras de veículos do Brasil, para adequar seus produtos às novas condições, partiram para a utilização de duas soluções: 1- controle mais preciso da mistura combustível/ar (injeção eletrônica de combustível e ignição eletrônica digital mapeada); 2- tratamento do gás de escape (conversor catalítico). O primeiro veículo a receber injeção eletrônica de combustível no Brasil, foi o GOL GTi, que utilizava o sistema LE 2.1 jetronic da Bosch. Em 1991 a GM do BRASIL, passou a equipar toda a sua linha Monza e Kadett com injeção eletrônica de combustível utilizando o sistema MULTEC TBI 700 da AC Rochester, tanto a gasolina quanto a álcool. Hoje todos os automóveis de passeio, produzidos no Brasil contam com injeção eletrônica de combustível, dos seguintes fabricantes: BOSCH, DELPHI (AC ROCHESTER), MAGNETI-MARELLI e FIC (Ford). CLASSIFICAÇÃO DOS SISTEMAS DE INJEÇÃO: SINGLE-POINT ou SINGLE-PORT - Uma única válvula de injeção para todos os cilindros. MULTI-POINT ou MULTI-PORT - Uma válvula de injeção para cada cilindro do motor.

58 MOTORES DE COMBUSTÃO INTERNA - PROF. DURVAL PIZA DE OLIVEIRA JUNIOR 58 A seguir apresentamos esquemas gerais dos sistemas LE 2.1 e MULTEC TBI 700 (EFI) SISTEMA BOSCH LE 2.1 JETRONIC (PIONEIRO NO BRASIL) ESQUEMA GERAL COMPONENTES DO SISTEMA: 1- Reservatório de combustível 15- Borboleta aceleradora 2- Bomba auxiliar 16- Parafuso de regulagem da marcha lenta 3- Eliminador de bolhas 17- Interruptor de borboleta aceler. fechada 4- Bomba de combustível 18- Interruptor de borboleta aceler. aberta 5- Filtro de combustível 19- Sensor de temperatura do motor 6- Tubo distribuidor 20- Distribuidor de ignição 7- Regulador de pressão 21- Resistores das válvulas 8- Válvula de injeção (uma por cilindro) 22- Bateria 9- Coletor de admissão 23- Comutador de ignição 10- Medidor de vazão de ar 24- Relé de comando da injeção 11- Sensor de temperatura do ar 25- Unidade de comando da injeção 12- Parafuso de regulagem da % de CO 26- Bobina de ignição 13- Regulador de ar adicional 27- Sensor de detonação 14- Válvula corretora de rotação 28- Fusível

Quais são os motores de combustão interna?

O motor de combustão interna, também conhecido como motor a explosão, é uma máquina térmica que tem como função converter energia proveniente da queima de combustíveis em energia mecânica. Os tipos de motor de combustão interna mais utilizados são o motor a gasolina e o motor a diesel.

Quais são os 4 tempos do motor de combustão interna?

O funcionamento do motor de combustão interna ocorre em quatro tempos: admissão, compressão, explosão ou combustão e escape. O combustível mais utilizado atualmente no mundo inteiro é a gasolina.

Como funciona o sistema de partida dos motores de combustão interna?

O motor de partida transforma a energia elétrica que recebe da bateria em energia mecânica para girar o motor a combustão e vencer a resistência ao movimento – causada pela compressão dos cilindros, atrito (que é ainda maior com o motor frio) e o peso das peças internas, como pistões, bielas e virabrequim.

Quais são as partes móveis de um motor de combustão interna?

São elas:.
Êmbolo ou pistão – peça acoplada à biela e que se desloca no interior do cilindro;.
Pino de êmbolo – sua função é ligar o pistão à biela;.
Biela – liga o pistão à árvore de manivelas ou virabrequim;.
Virabrequim ou árvore de manivelas – coordena os tempos do motor e é ligada ao volante do motor;.